KDTree Benchmarks
I’ve been meaning to do some benchmarks on KDTree building / rendering for some time, given that although I’ve arrived at a set of build criteria which generally give the best intersection performance, I’d never actually done comparisons of the pros/cons of the different variables when building KDTrees and their cost/benefit ratio regarding intersection performance, and had never seen any published comprehensive benchmarks of KDTrees which tested more than one or two variables at a time. I’m also unlikely to play around with KDTrees much more, as I have to some degree moved over to using SSE-optimised BVH acceleration structures which generally provide slightly better render times, but orders-of-magnitude faster build time, thanks to standard binning.
Caveats: First of all, these tests are of my implementation of a KDTree. In certain configurations, it’s very close to PBRT’s reference implementation, but I’ve optimised the traversal code to reduce branching, and added “Perfect Split” clipping and min/max binning approximation as options while building. I’ve also added inverse hashed mailboxing to ray intersection. However, there’s no guarantees as to the correctness of my implementation, although in testing against other renderers which use KDTrees, it seems highly competitive, and is definitely faster than PBRT’s implementation - ~2x faster with an Empty Bonus of 0.9, clipping and using inverse hashed mailboxing.
So while the following results are fairly comprehensive, there’s certain build criteria I didn’t bother testing, and doesn’t in any way test the variable of leaf node threshold size, which I’m pretty certain will have a strong influence on both build time and intersection time. In addition, due to the time it’s taken to accumulate the results, I’ve had to reduce the number of test scenes down to three from the planned six, which also means these tests could be more thorough. I also recorded acceleration structure size, from which - because I know the KDTree nodes are 8 bytes each - I can work out the number of nodes the resulting KDTree had. Unfortunately, I didn’t record the breakdown of interior / leaf nodes, which would have been useful. I’m not showing those numbers in these results, but I use them in the results section to analyse some of the timing numbers.
The results of acceleration structure build time are also slightly misleading, although still relevant - I’ve disabled multi-threaded building of the KDTree for a few reasons: first of all, it’s not a completely parallelisable problem, and while it definitely is possible to parrallelise KDTree building to a degree, depending on the criteria used for building the KDTree, different amounts of parallelism are possible. For example using “Greedy” n log n SAH splitting, each thread needs to compile its own copy of the list of edges, and this either requires a lot more memory or if you break the task down into separate chunks a merge-sort stage at the end. It also causes a lot of cache thrashing, generally limiting the scalability of multithreading. So while the build times are not realistic in terms of “wall clock” time (generally I tend to get 3-4x speedup from multithreading the KDTree builds), given that they are consistently single-threaded for all configurations and the render times are consistently completely parallel, it allows a consistent comparison of the cost/benefit ratio for building a KDTree in a particular configuration vs. the render time.
Testing methodology / criteria
The theoretical best way to test ray intersection performance of an acceleration structure tends to be by casting well-distributed rays at the centre of the acceleration structure from a sphere around it, simulating incoherent rays, in such a way that path tracing will produce off diffuse surfaces. However, I’d prefer to keep tests more practical, so I’ve decided to test different meshes by putting them into a fully-enclosed room which has diffuse materials and a single area light and time how long it takes to build the acceleration structure for the main test mesh and render the resulting image. The number of ray bounces for all ray types will be four, and the render resolution and number of samples-per-pixel will be the same for all tests: 1024 x 768 and 128 respectfully.
Instead of baking down all the triangles into one main scene acceleration structure, I’m going to use the two-level acceleration structure hierarchy I use for instancing, such that the scene has an acceleration structure containing all objects, and each object’s geometry instance has an acceleration structure of the triangle mesh. This allows me to only alter the configuration of the central test object’s KDTree, while keeping the other acceleration structures for the walls, floor, etc and scene constant. The acceleration structures for the wall, floor and ceiling will each only have two triangles anyway, so will immediately produce leaf nodes.
For building the acceleration structure, I’m going to test two different methods: min/max binning SAH approximation, and the standard “Greedy” n log n SAH version which PBRT implements. For both methods, I’m going to test always splitting on the largest volume extent axis vs. checking all three available axes. For the “Greedy” method, I’m also going to test the effect the “Empty bonus” value has, and what effect clipping triangles (“Perfect splits”) has.
The only variable that will be tested for rendering itself is enabling/disabling Inverse Hashed mailboxing.
Test Scenes:
I’ll be testing the following three scenes:
Scene 1: Stanford Dragon: 871K triangles, in axis-aligned orientation
Scene 2: Robot: 1.6M triangles, at 45-degree rotation to axis-alignment
Scene 3: XYZ Dragon: 7.2M triangles, axis-aligned orientation
Because of the fact I’m using a two-level hierarchy of acceleration structures, in order to test Scene 2 fairly with regards to the axis alignment rotation, I’ve re-baked out the mesh in world-space with a 45-degree rotation around the Y (up) axis, so that its triangles are rotated within object-space as well.
KDTree leaf node threshold size is always 6, and for min/max binning approximation, when the number of objects left to be split is less than 8192, I switch over to the normal “Greedy” implementation - otherwise, I’ve found that min/max binning does a pretty poor job of splitting at that level. Published papers on the min/max binning algorithm for KDTrees seem to show similar issues.
In terms of recording the specific times, this is being done within the code using gettimeofday()
to record the respective start/end times, calculating the difference and convert it to double precision, giving a number in seconds. That number is rounded to 5 decimal places.
For all test configurations, I’ve run six independent tests in a clean state, and the results shown here are the mean average of those results, again rounded to 5 decimal places. For the last two tests of Scene 3, there were differences in time for some of the tests outside the margin of error, so I ran a few more tests for those. The tests were all run on the same computer (Dual Xeon, Sandy Bridge micro-arch), running Linux 3.5 kernel, and all test executables were built with GCC 4.7.1 with the same options. I also tried to ensure that the CPU core temperatures were below 60 degC before running each test.
Test Results / Analysis
Scene 1
Specs | Time (seconds) | ||
---|---|---|---|
All Axes | Build | Render | Render (mailboxing) |
No | 2.67848 | 100.58898 | 71.75651 |
Yes | 3.92627 | 98.72142 | 71.91679 |
With min/max binning approximation, build times are relatively fast (a fair amount of the time is taken up by the “Greedy” partitioning which takes over after 8192 triangles), and surprisingly, while checking all three axes instead of just the single largest extent axis takes longer, it doesn’t take three times as long, which is what I would have expected. I guess some of the time would be due to memory allocation, which when checking all three axes is only done once.
On the rendering side, the fact that all axes were checked while building seems to have very little effect in this case, indicating that the extra time penalty for building might not always be worth the effort. Enabling Inverse Hashed Mailboxing has a huge effect on render times, effectively reducing the render times to ~73% of their previous times.
Specs | Time (seconds) | ||||
---|---|---|---|---|---|
All Axes | Empty bonus | Clipping | Build | Render | Render (mailboxing) |
No | 0.0 | No | 4.81748 | 84.54154 | 63.03533 |
No | 0.5 | No | 4.88900 | 83.79326 | 62.14473 |
No | 0.9 | No | 7.51690 | 79.24561 | 59.32178 |
Yes | 0.5 | No | 8.11435 | 86.87896 | 67.30279 |
Yes | 0.9 | No | 10.87438 | 72.90415 | 56.69851 |
No | 0.9 | Yes | 14.48284 | 73.29534 | 54.64541 |
Yes | 0.9 | Yes | 25.01317 | 67.64028 | 52.54923 |
With the “Greedy” n log n partitioning method, build times are more expensive, and the “Empty bonus” value, used when building to maximise - or cut away - empty space has a very big effect on both the build time and the render time. Based on the memory allocation numbers I noted, and thus the number of nodes in each KDTree, I can see that having a bigger empty bonus leads to deeper (and therefore bigger) trees, as expected, but also better rendering times. Checking all three axes gives slightly better render times with an Empty Bonus of 0.9, but worse render times with one of 0.5. Triangle clipping is very expensive at build-time in this test, and only provides slight speed improvements at render time.
Although faster to build, the min/max binning approximation cannot generate trees as well as the “Greedy” one, so render times are significantly faster with trees built with the “Greedy” method. Once again, Enabling Inverse Hashed Mailboxing significantly reduces render times across the board.
Scene 2
Specs | Time (seconds) | ||
---|---|---|---|
All Axes | Build | Render | Render (mailboxing) |
No | 12.36240 | 170.46582 | 131.55602 |
Yes | 14.05898 | 169.83621 | 131.14230 |
Min/max binning really struggled with this mesh, not really partitioning the triangles very well, and leading to very large leaf nodes (over 400 triangles in some cases) once the depth limit (35) had been hit. Checking all three axes gave barely detectable improvements at render time.
Again, Enabling Inverse Hashed Mailboxing has the same effect as seen previously.
Specs | Time (seconds) | ||||
---|---|---|---|---|---|
All Axes | Empty bonus | Clipping | Build | Render | Render (mailboxing) |
No | 0.0 | No | 18.18691 | 133.51584 | 93.14001 |
No | 0.5 | No | 18.32624 | 133.04663 | 93.46723 |
No | 0.9 | No | 71.08561 | 141.30970 | 98.75770 |
Yes | 0.5 | No | 24.46969 | 129.35730 | 95.41422 |
Yes | 0.9 | No | 85.27671 | 131.80109 | 96.49541 |
No | 0.9 | Yes | 31.75843 | 90.94120 | 70.42518 |
Yes | 0.9 | Yes | 52.58952 | 87.22592 | 63.87435 |
Once again, with the “Greedy” partitioning method, build times are more expensive, but with this mesh, a more aggressive Empty Bonus value produced deeper trees with no benefit - I think this is down to the fact that the mesh has been rotated at 45 degrees to the axis alignment, leading to non-tight AABBs. This is backed up by the fact that the tests with “Clipping” enabled (which spatially clips triangles to test split criteria as well as clipping a node’s BB to its parent node’s, thus removing overlap) not only build faster despite doing more work, but have significantly reduced render times. Checking all three axes in the final test with clipping enabled is much more expensive at build time over testing a single axis, but gives a reasonable render time improvement.
Once again, Enabling Inverse Hashed Mailboxing significantly reduces render times across the board.
Scene 3
Specs | Time (seconds) | ||
---|---|---|---|
All Axes | Build | Render | Render (mailboxing) |
No | 28.78550 | 142.52660 | 118.61174 |
Yes | 40.60875 | 141.60918 | 117.62730 |
In this test with min/max binning, checking all three axes has a fairly moderate penalty at build time over checking only one axis and provides a very slight render time improvement. Enabling Inverse Hashed Mailboxing provides a significant render time improvement once again.
Specs | Time (seconds) | ||||
---|---|---|---|---|---|
All Axes | Empty bonus | Clipping | Build | Render | Render (mailboxing) |
No | 0.0 | No | 51.80268 | 128.99604 | 105.48060 |
No | 0.5 | No | 52.92773 | 128.41903 | 104.65014 |
No | 0.9 | No | 71.33298 | 123.14448 | 100.40070 |
Yes | 0.5 | No | 91.35005 | 138.43419 | 112.33473 |
Yes | 0.9 | No | 109.65947 | 123.00479 | 100.35440 |
No | 0.9 | Yes | 112.55201 | 117.00627 | 95.81172 |
Yes | 0.9 | Yes | 209.72551 | 117.77966 | 95.89430 |
The “Greedy” partitioning method takes a significant amount of time to build with this mesh, sometimes taking longer to build than it does to render (although building is single threaded as I’ve disabled multi-threaded building). Except for a strange result with the test with Empty Bonus of 0.5 and checking all axis, which for some reason produced huge trees (based on the number of nodes allocated) but still with large leaf nodes, leading to slow performance, the same general picture appears, although this time the “Empty Bonus” variable has much less of an effect, as does the clipping and checking all axes. This is probably because with this mesh it is axis-aligned in general, and the triangles are extremely small. Based on the build-time penalty for clipping and checking all axes, the pay-off for build-time vs render time in this test doesn’t seem as worth it.
Inverse Hashed Mailboxing once again brings down the render times in all cases.
Conclusion
KDTree building is very expensive, especially with “Greedy” n log n building, but in all cases this generates faster trees for rendering than min/max binning approximation does. The “Empty Bonus” variable seems to have variable results, with more aggressive values giving deeper trees but faster render times for some meshes, but producing worse trees in other cases. With “Perfect Split” clipping enabled, build time is even more expensive, but with meshes that don’t have tight AABBs, seems to be well worth the extra work. Checking all axes doesn’t really seem to provide that much benefit, but with min/max binning, it’s possible to parallelise checking all three axes at once with SSE intrinsics, so the cost/benefit payoff is possibly there, although that’s not possible for KDTree building with the “Greedy” method or when spatially clipping triangles, so standard scalar code needs to be used, increasing the work that needs to be done.
Using Inverse Hashed Mailboxing provides no build-time penalty and significantly reduces render time in all situations.
Future investigation: Given how much better the results of KDTree building are with “Greedy” building, I’d be interested in what benefit using min/max binning over standard binning has with BVH acceleration structures, and whether the huge potential penalty for doing “Greedy” building with BVHs would provide any render time benefits.