Interpreter Programming Language Benchmarks

I’ve sporadically but progressively been continuing to work on my Mint interpreter programming language/VM that was heavily based off Robert Nystrom’s excellent Crafting Interpreters Lox language tutorial, and have spent a fair bit of time trying to optimise the main VM bytecode despatch loop among other areas of the VM, as well as performing some benchmark comparisons with other similar bytecode VM interpreter languages like Lua, Python and Ruby to see where Mint stands performance-wise as well as to understand how fast the other VMs are, how they work and some of their performance characteristics for different things.

I managed to speed up the original HashMap implementation a bit by caching the capacity mod bit-mask and the capacity and table load ratio, so as to not recalculate them on-the-fly every lookup which wasn’t needed, and to only update them when the table resized, in addition to adding some compiler hints in order to force inline things and give hints on branch prediction likelihood which helped a bit more.

One of the main bottlenecks in raw execution speed is the main VM stack in terms of operations pushing and popping items onto and off it, so this is really the hot loop of the VM - at least when the Garbage Collector is not being exercised. On the bytecode opcode execution side of things, I added some new opcodes in order to do some things more efficiently, for example to operate directly on items within the stack in certain limited scenarios when constant values are used, without having to pop and push them back - for example this can be used by compound assignment operators like +=, -=, *=, etc, with constant values being used as the right-hand-side argument, and helped speed things up a bit.

For general for loops incrementing a value by 1 each time, the push/pop overhead was fairly substantial, and I added a dedicated OP_INC_LOCAL opcode to help with this, which can increment the top of the stack by one without popping the stack and then having to push the result after adding 1. The compiler part can detect when this can be used (e.g. in the for loop increment clause, with a constant value being used as the increment) and will use it when possible.

Lua - being a register-based interpreter VM - seems to have an advantage in the area of performance - especially in maths-heavy code - because it doesn’t need to do as many stack operations, and this is one of the reasons Lua is one of the faster bytecode interpreter languages.

The main dispatch loop can also be optimised by using “computed gotos” instead of just a case statement for each opcode within a switch statement: with switch / case statements, compilers are obliged (in C and C++ anyway) to add an upper bound value check, which slows down execution.

In terms of where things stand now performance-wise, I’m fairly happy: Mint is not the fastest interpreter language VM, but it is very competitive against Python 2, Python 3 and Ruby in most cases, and occasionally can win against Lua.

For performance comparisons, I’ve mostly been using basic problem solving exercises from Project Euler which are normally maths-heavy, meaning the benchmark test programs I’m using are slightly skewed benchmarks towards maths operations compared to more general operations (i.e. they don’t generally exercise the Garbage Collector infrastructure), but that’s the type of code execution I’m mostly interested in for the moment.

I’m going to compare Mint against four (I’ll compare Python 2 and Python 3 separately) other interpreter language VMs:

  • Lua 5.3
  • Python 2.7
  • Python 3.8
  • Ruby 2.7

These are the package versions available with the Linux distro I’m using (Linux Mint) on my laptop, and I’m going to compare them against Mint (VM) built with GCC 9.3, as that’s the system compiler version that I assume the packages for the other interpreter language VMs were compiled with, so seems the fairest compiler to use to compile with. Mint will be built with optimisation level -O3. Normally I like also comparing different compiler versions and optimisation levels, but I’m not going to do that this time as my aim is to compare against other interpreter VMs, and that would increase the number of tests I’d have to do quite a lot, and I’d rather not get into building each one from source, but that would be the fairest way of doing a fully-comprehensive comparison if I had the time.

The tests are being done on a laptop with an Intel i5-8350U processor, with the power plugged in. I’ll make sure the CPU temp is normal before running each test to prevent thermal throttling, and will run five identical tests of each benchmark with each interpreter language, using the mean average as the final result.

I will run the following seven tests:

TestDescription
Test 1Recursive Fibonacci to 35 levels.
Test 2The Leibniz algorithm to calculate an approximate value of PI, doing 4,000,000 iterations.
Test 3Loop value accumulation and mathematical operations: 100,000,000 loops of adding the result of temporary sums and multiplications of the loop control variable. See code examples below.
Test 4Looped sum of multiples of 3 or 5, up to a value of 50,000,000. A modification of Project Euler exercise 1.
Test 5A sum of all amicable numbers below 15,000. A modification of Project Euler exercise 21.
Test 6A count of the number of rectangles in a grid of size (100, 150). A modification of Project Euler exercise 85.
Test 7A calculation of the sum of all primes up to 10,000,000, using the Sieve of Eratosthenes algorithm.

As quick partial examples, here is the Mint script code for Test 3:

var a = 1;
for (var i = 0; i < 100000000; i += 1)
{
    a = (i + i + 3 * 2 + i + 1 - 0.42) / a;
}
print a;

here is the Lua version of Test 3:

local a = 1
for i = 0,100000000-1
do
    a = (i + i + 3 * 2 + i + 1 - 0.42) / a;
end
print (a)

here is the Python 3 version:

a = 1
for i in range(0, 100000000):
    a = (i + i + 3 * 2 + i + 1 - 0.42) / a
print(a)

and here is the Ruby version:

a = 1
0.upto 100000000-1 do |i|
    a = (i + i + 3 * 2 + i + 1 - 0.42) / a
end
print a
print "\n"

These are the results, showing average execution time for each test for all interpreter language VMs (smaller values are better):

Interpreter programming language performance benchmarks chart

Lua has a very good showing (largely I think because it’s a register-based VM instead of a stack-based one), and I’d expect the non-JIT version of LuaJIT which is heavily-optimised on x86-x64 would be even faster.

Mint just wins in Tests 6 and 7, and is second fastest in the remaining tests, which isn’t bad as far as I’m concerned. There’s more room for optimisation - especially with regards to the Garbage Collector which these benchmark tests purposefully didn’t exercise, but also in other areas, i.e. Constant Folding is on my list to look at implementing - but I’m happy enough with the improvements and speed for the moment.




Archive
Full Index

2024 (1)
2023 (7)
2022 (3)
2021 (5)
2020 (4)
2019 (7)
2017 (1)
2016 (2)
2015 (1)
2014 (9)
2013 (10)
2012 (7)


Tags List